CHINO

## INSTRUCTION MANUAL FOR JU THYRISTOR REGULATOR COMMUNICATIONS INTERFACE



Always keep this manual with the unit and in an easily accessible place.

Please make sure that this manual is delivered with the unit to the final user.



# Contents

| INTRODUCTION                                                                                                                                                                                                                                                                            | 1                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1.Other Instruction Manual to be consulted<br>2.Caution Display                                                                                                                                                                                                                         |                            |
| 1. GENERAL                                                                                                                                                                                                                                                                              | 2                          |
| 1.1 RS-422A/RS-485 Communications Interface1.2 Communications Protocol1.3 Communications Specifications                                                                                                                                                                                 | 2                          |
| 2. SETTING OF COMMUNICATIONS PARAMETERS                                                                                                                                                                                                                                                 | 3                          |
| <ul> <li>2.1 Setting of Protocol (PtCL)</li> <li>2.2 Setting of Instrument No. (AdrS)</li> <li>2.3 Setting of Transmission Speed (rAtE)</li> <li>2.4 Setting of Character (CHAr)</li> </ul>                                                                                             | 4<br>4                     |
| 3.CONNECTIONS                                                                                                                                                                                                                                                                           | 5                          |
| <ul><li>3.1 Connection Precautions</li><li>3.2 Communications Cables</li><li>3.3 RS-422A/RS-485 Connections</li></ul>                                                                                                                                                                   | 6                          |
| 4.MODBUS PROTOCOL                                                                                                                                                                                                                                                                       | 10                         |
| <ul> <li>Basic Procedures of Communications and Precautions</li> <li>4.1 Message Transmission Modes</li> <li>4.2 Data Time Interval</li> <li>4.3 Message Configuration</li> <li>4.4 Creating a Message</li> <li>4.5 Function Code</li> <li>4.6 Processing in Abnormal Status</li> </ul> | 11<br>12<br>12<br>15<br>16 |
| 4.7 Setting unit reference table                                                                                                                                                                                                                                                        | 23                         |

## INTRODUCTION

This instruction manual describes the specifications and operation of the communications interface (RS-422A/RS-485) of the setting communications unit for JU series thyristor regulators.

## **1.Other Instruction Manual to be consulted**

To understand the contents of this instruction, it is necessary to fully understand the operations and specifications of the setting communications unit for JU series thyristor regulators. This instruction manual is for the communications interface only. For the running and operation, please refer to the following instruction manuals:

- 1. JU series single-phase thyristor regulator (manual No. INE-316 )
- 2. Thyristor regulator setting communications unit (manual No.INE-317 )
- \* Also refer to the instruction manual of the computer being used.

## 2.Caution Display

This manual contains explanation of precautions. Observe these precautions when operating and handling the communications interfaces, otherwise the instrument may be damaged, resulting in a deterioration in its performance, or operation failures may also occur.

# 

- (1) The right is reserved to change the contents of this manual at any time without notice.
- (2) The contents of this manual have been prepared professionally. However, if you have any questions, or notice of error or an omission of descriptions found on this manual, please contact your nearest CHINO sales agent.
- (3) CHINO Corporation is not responsible for any results influenced by the operation of this communications interface, irrespective of item (2) above.

## 1. GENERAL

By adding the communications interface to the setting communications unit for JU series thyristor regulators, the settings of various parameters including manual output, gradient and elevation and entering of load voltage, current, power, resistance value, alarms, etc. can be performed from a master unit (personal computer, PLC, etc.)

Two types (RS-422A and RS-485) of the communications interface are available by switching them by the connections at terminals. The MODBUS protocol used offers easy system configuration with other units using this type of communications protocol.

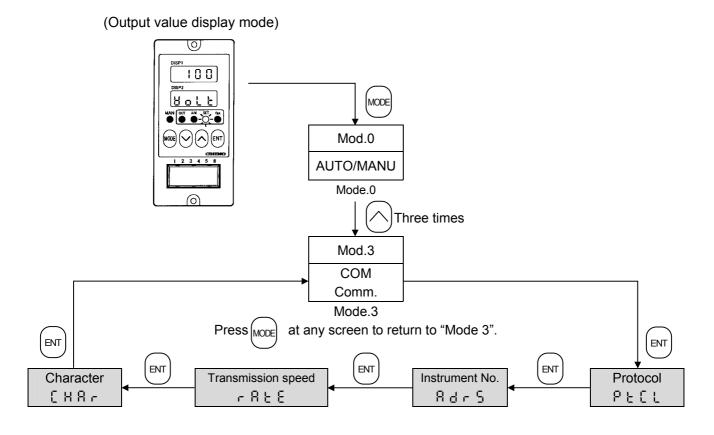
## 1.1 RS-422A/RS-485 Communications Interface

The RS-422A or RS-485 communications interface can communicate with setting communications units and/or other units up to 31 sets. If a personal computer is used as the master unit, an RS-232C⇔RS-422A/485 signal converter may be required.

A line converter (Model SC8-10) for RS-232C⇔RS-422A/485 signal conversion is available from CHINO.

RS-422A uses 4 signal lines (2 lines for transmission and 2 lines for receiving) and RS-485 uses 2 signal lines by switching them for transmission and receiving.

## **1.2 Communications Protocol**


MODBUS Protocol (MODBUS is the registered trademark of Schneider Automation Inc.) MODBUS Protocol has RTU mode and ASCII mode that can be selected by function keys.

## **1.3 Communications Specifications**

- \* Half-duplex (polling selecting system)
- \* Protocol: MODBUS protocol
- \* Transmission speed: 19200, 9600, bps selectable
- \* Start bit: 1 bit
- \* Data length: 7 bits(ASCII)/8 bits(RUT/ASCII) selectable
- \* Parity bit: Even / Odd / No parity selectable
- \* Stop bit: 1 bit / 2 bits selectable
- \* Transmission code : Binary(RTU) / ASCII(ASCII)
- \* Error check: LRC(ASCII) / CRC-16(RTU)

## 2. SETTING OF COMMUNICATIONS PARAMETERS

Set up 4 parameters of "Protocol", "Instrument No.", " Transmission speed" and "Character".



## 2.1 Setting of Protocol (PtCL)

 $\frown$ 

| <ul> <li>(1) Press [INT] to display PECL</li> <li>(2) Select the protocol by pressing</li> </ul> | in DISP2.               |                  |
|--------------------------------------------------------------------------------------------------|-------------------------|------------------|
|                                                                                                  | $\sim$                  | $\bigcirc$       |
| (2) Select the protocol by pressing                                                              | or $ $ , and then press | ENT to store it. |
|                                                                                                  | $\bigcirc$ $\bigcirc$ . | $\bigcirc$       |

| Kind  | Protocol     | Default |
|-------|--------------|---------|
| ۲٤U   | Modbus rtu   | c       |
| 8SC , | Modbus ascii | ΓCU     |

\*When the protocol is changed, the setting of the character will be changed to the default value.

## 2.2 Setting of Instrument No. (AdrS)

Set instrument numbers to setting communications units (1 set to plural sets) for the communications with a master unit (personal computer, PLC, etc.). Make sure not to set the same number to different units.

- (1) Press (ENT) to display  $(\overline{P} d 5)$  in DISP2.
- (2) Select the instrument number (from 01 to 99) by pressing  $\bigcirc$  or  $\bigcirc$  and then press (ENT) to store it.



The instrument numbers are from 01 to 99. Make sure not to set the same number to different setting communication units or other instruments on the same communications line. (Default value 01)

## 2.3 Setting of Transmission Speed (rAtE)

Set the same transmission speed to setting communications units and a master unit (personal computer, PLC, etc.).

to store it.

- (1) Press (ENT) to display  $\overline{r R E}$  in DISP2.
- (2) Select the transmission speed by pressing  $\bigcirc$  or  $\bigcirc$  and then press (ENT) to store it.

Transmission speed : 9600 (9.6k), 19200 (19.2k) bps (Default: 19200 bps)

## 2.4 Setting of Character (CHAr)

(1) Press (ENT) to display  $\begin{bmatrix} L H R \\ r \end{bmatrix}$  in DISP2.

(2) Select the character by pressing  $\bigwedge$  or  $\bigwedge$  , and then press (ENT)

| Kind | Bit length | Parity      | Stop bit | Default value  |
|------|------------|-------------|----------|----------------|
| 7E1  |            | Even        | 1        |                |
| 7E2  | 7 bits     |             | 2        |                |
| 701  | 7 013      | Odd         | 1        | DTU            |
| 702  |            | Odd         | 2        | RTU<br>8N1     |
| 8N1  |            | No parity   | 1        |                |
| 8N2  |            | No parity   | 2        |                |
| 8E1  | 8 bits     | Even        | 1        | (ASCII)<br>7E1 |
| 8E2  | o bits     | o bits Even | 2        |                |
| 8O1  |            | Odd         | 1        |                |
| 802  |            | Cdd         | 2        |                |

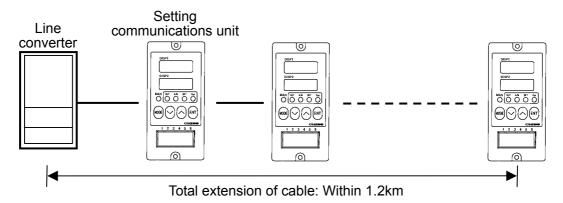
\*The 8-bit length is only available in MODBUS RTU protocol.

## **3.CONNECTIONS**

## **3.1 Connection Precautions**

### **3.1.1 Communications Terminals**

The terminal arrangement of RS-422A and RS-485 communications interface is different.


| Terminal No. | RS-422A | RS-485        |
|--------------|---------|---------------|
| 1            | SDA     | SA            |
| 2            | SDB     | SB            |
| 3            | RDA     | Short with 1. |
| 4            | RDB     | Short with 2. |
| 5            | SG      | SG            |

## 3.1.2 Total extension of RS-422A/485 communications cable is up to

#### 1.2km.

The wiring interval between each instrument is option, but the total extension distance of cable is within 1.2km.

(Line converter ⇔ the final end of setting communications unit)



#### **3.1.3 Noise preventive terminals**

Separate the communications cable from drive power cables and other communications cable more than 50cm so as not to be affected by noises.

### **3.1.4 Mount a terminating resistor.**

For using RS-422A or RS-485 communications interface, mount a 100  $\Omega$  resistor to the setting communications unit or other instrument connected at the final end. (For details, see Section 3.3.) [A general metal film resistor can be used. The resistor (sold separately) is available from CHINO.]

#### 3.1.5 Number of setting communications unit connectable

Up to 31 sets

## **3.2 Communications Cables**

Make ready cables dedicated to communications before performing connection. Dedicated communications cables (sold separately) are available at CHINO.

## 3.2.1 Communications cables for RS-422A

(1) Connection between line converter and setting communications unit

| Cable           | Type O crimp terminal $\iff$ Twisted cable RS-422A cable (for line converter)                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Style           | Peel off the conductors by cutting type O terminals.<br>RDA(black)<br>RDB(white)<br>SDA(red)<br>SDB(green)<br>SG(blue)<br>To line converter<br>The cable consists of a pair of twisted dual-core VCTF wires with SG (signal<br>grounding) wire at both ends. Cut off the SG wire on the line converter side<br>because the converter has no SG terminal. Cut type O terminals and peel off<br>conductors on the setting communications unit side. |
| Internal wiring | RDA O       (1)       O       SDA         RDB O       (1)       O       SDB         SDA O       (1)       O       SDB         SDB O       (1)       O       RDA         SDB O       (1)       O       RDB         SG O       (1)       O       SG                                                                                                                                                                                                 |
| Type code       | RZ-CRA2                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### (2) Connection between setting communications unit and setting communications unit

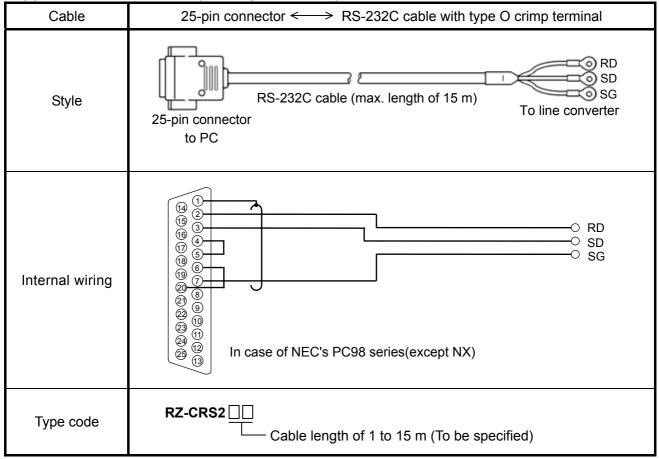
| Cable           | Twisted cable $\iff$ Twisted cable RS-422A cable (for parallel connection)                                                                                                                                                                       |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Style           | Peel off the conductors by cutting type O terminals.<br>SDA(black)<br>SDB(white)<br>RDA(red)<br>RDB(green)<br>SG(blue)<br>SG(blue)<br>The cable consists of a pair of twisted dual-core VCTF wires with SG (signal grounding) wire at both ends. |
| Internal wiring | SDA O       /1       O       SDA         SDB O       /1       O       SDB         RDA O       1       O       SDB         RDB O       1       O       RDA         SG O       1       O       RDB         SG O       1       O       SG           |
| Type code       | RZ-CRA1                                                                                                                                                                                                                                          |

## **3.2.2 Communications cables for RS-485**

| Cable           | Type O crimp terminal $\iff$ Twisted cable RS-485 cable (for line converter)                                                                                                                                                                                                                                                                                   |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Style           | Peel off the conductors by cutting type O terminals.<br>RDA(black) (black)SA<br>RDB(white) (green)SG<br>SG(green) To line converter<br>To line converter<br>The cable consists of a twisted dual-core CVVS wires with SG (signal grounding)<br>wire at both ends. Cut off the SG wire on the line converter side because this<br>converter has no SG terminal. |
| Internal wiring | RDA O O SA<br>RDB O O SB<br>SG O SG                                                                                                                                                                                                                                                                                                                            |
| Type code       | RZ-LEC Cable length of 001 to 200 m (To be specified)                                                                                                                                                                                                                                                                                                          |

(1) Connection between line converter and setting communications unit

## (2) Connection between setting communications unit and setting communications unit

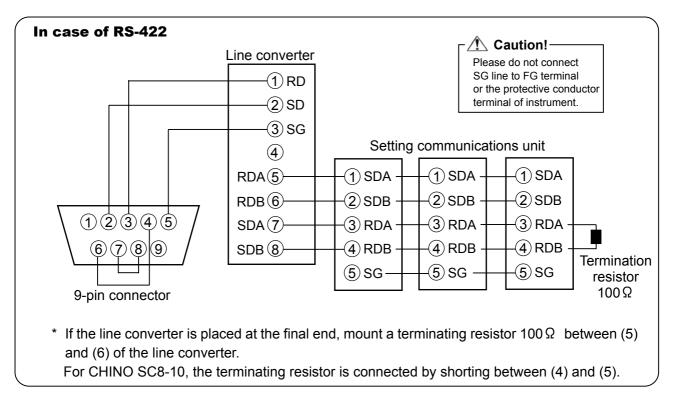

| Cable           | Twisted cable $\iff$ Twisted cable RS-485 cable (for parallel connection)                                                                                                                                                                                                    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Style           | Peel off the conductors by cutting type O terminals.<br>SA(black) (black)SA<br>SB(white) (white)SB<br>SG(green) (green)SG<br>To line converter<br>To line converter<br>The cable consists of a twisted dual-core CVVS wires with SG (signal grounding)<br>wire at both ends. |
| Internal wiring | SA O O SA<br>SB O O SB<br>SG O SG                                                                                                                                                                                                                                            |
| Type code       | RZ-CSS1Z2(0.2m) or RZ-LEC                                                                                                                                                                                                                                                    |

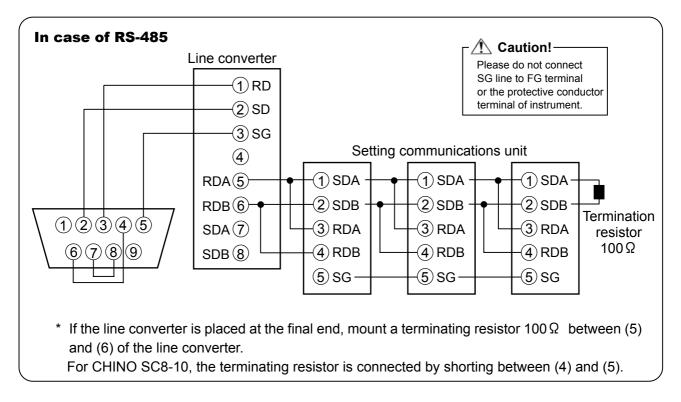
## 3.2.3 Communications cables for RS-232C (reference)

| Cable           | 9-pin connector $<$ $\rightarrow$ RS-232C cable with type O crimp terminal                                         |
|-----------------|--------------------------------------------------------------------------------------------------------------------|
| Style           | 9-pin connector<br>to PC                                                                                           |
| Internal wiring | (1)<br>(6)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(7)<br>(3)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7 |
| Type code       | RZ-CRS6<br>Cable length of 1 to 15 m (To be specified)                                                             |

(1) Connection between PC (with 9-pin connector) and line converter.

(2) Connection between PC (with 25-pin connector) and line converter.





## 3.3 RS-422A/RS-485 Connections

This paragraph shows the connection of RS-422A/485 communications interfaces to a personal computer by using the line converter (Model: SC8-10 from CHINO).

Since the line converter and the personal computer use three control signals (transmission, receiving, and signal grounding) only, the wiring arrangement in the connector is required like as RS-232C connections.

(For details, refer to the instruction manual for the line converter.)





## **4.MODBUS PROTOCOL**

## **Basic Procedures of Communications and Precautions**

## \land Attention!

#### 1. When you set the parameter (writing), set the key lock at first.

The setting communications unit is always ready for communications. It outputs a response at any time when data are requested from a master unit (personal computer, PLC, etc.).

However, for setting parameters of the setting communications unit from a master unit, it is necessary to set the setting communications unit to key lock condition in advance. Key lock is enabled by the function key of the setting communications unit or through communications from the master unit.

If parameters of the setting communications unit not being key lock condition are set from the master unit, the setting communications unit returns the error code of 12H.

**2. Take care of command re-transmission as there is no control signal line in use.** Since the serial interfaces of the setting communications unit communicate freely without using any control line, a reception failure may occur under some conditions. Exercise care when

resending a command.

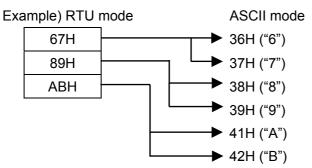
3. Don't disconnect or short any cables or instruments constituting the serial interface, or turn the power on or off during communications.

Don't disconnect or short any cables or units constituting the serial interface, or turn the power on or off during communications, or the operation may stop or lead to a malfunction. When this happens, all the components of the serial interface must be reset to repeat the operation from the beginning.

## 4. Send the next command after making sure that the communications drive has been turned off.

For RS-485 communications interface, plural units are connected to the same communications line and only one instrument, of which instrument No. is specified by a master unit (personal computer, PLC, etc.), drives the communications line. The communications drive is turned off at a certain time (approx. 5 msec) after sending the last character so that the master unit receives all characters completely. If a personal computer transmits a command to the next unit before the communications drive is turned off, signals interfere with each other resulting in some communication failure. Exercise caution when you use a high-speed personal computer.

## **4.1 Message Transmission Modes**

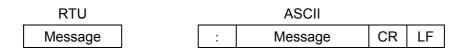

There are two modes of message transmission, RTU (Remote Terminal Unit) and ASCII, which can be selected by function keys.

| Item                 |            | RTU mode               | ASCII mode                             |  |  |
|----------------------|------------|------------------------|----------------------------------------|--|--|
| Interface            |            | RS-422A                | , RS-485                               |  |  |
| Communications       | system     | Half-duplex start-st   | Half-duplex start-stop synchronization |  |  |
| Transmission sp      | eed        | 9600, 1                | 9600, 19200bps                         |  |  |
| Character code       |            | Binary                 | ASCII                                  |  |  |
| Error obook          | Vertical   | Parity                 |                                        |  |  |
| Error check          | Horizontal | CRC-16                 | LRC                                    |  |  |
|                      | Start bit  | 1 bit                  |                                        |  |  |
| Character            | Data bit   | 8 bits                 | 7 bits, 8 bits                         |  |  |
| Configuration        | Parity bit | No parity, even, odd   | No parity, odd, even                   |  |  |
| Stop bit             |            | 1 bit, 2 bits          |                                        |  |  |
| Message start code   |            | None                   | : (Colon)                              |  |  |
| Message stop code    |            | None                   | CR, LF                                 |  |  |
| Data time interval 2 |            | 28 bit-time or shorter | 1 second or shorter                    |  |  |

(Table 1 Comparison between RTU and ASCII modes)

### 4.1.1 Transmitted data

The RTU-mode data is transmitted in binary numbers. In ASCII mode, the 8-bit binary data of RTU is separated into higher-order 4 bits and lower-order 4 bits and both are characterized (0 - 9, A - F).




Length of the RTU-mode message is half that of an ASCII-mode message, ensuring a more efficient transmission.

### 4.1.2 Message frame configuration

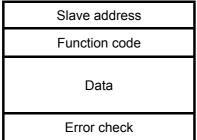
The RTU-mode data consists only of a message section.

The ASCII mode data consists of a start character [: (colon, 3AH)], a message and a stop character [(CR (carriage return, 0DH) + LF (line feed, 0AH)].



The ASCII mode has the advantage of easier troubleshooting because its message has a start character [:].

## 4.2 Data Time Interval


In RTU mode: 28 bit-time or shorter (2.9 msec. at 9600 bps, 1.4 msec. at 19200 bps) In ASCII mode: 1 second or shorter

When sending a message, keep the time interval of data constituting one message not longer than the time specified above. When the time interval of data is longer than the above, a receiving unit (i.e., this unit) recognizes that the data transmission from a sending unit is completed and this data is processed as an abnormally received message.

While message characters are continuously sent in RTU mode, the interval of data is maximum 1 second in ASCII mode, making it possible to use a master unit (personal computer, PLC, etc.) with a relatively slow processing speed.

## 4.3 Message Configuration

The MODBUS message has the following configuration in both RTU and ASCII modes.



#### 4.3.1 Slave address

The slave address is the instrument number of this unit (See Section 2.2.) and the setting of this address (1 to 99) is necessary by function keys before communications. A master unit usually communicates with one slave unit. While all slave units being connected receive same message from the master unit, only the slave unit specified with the slave address included in the command message responds to the message transmitted.

The slave address "0" is used for a message (broadcast message) addressed to all slave units from a master unit. In this case, the slave units do not transmit any response to the master unit.

### 4.3.2 Function code

Function codes are for the functions to be executed by the slave units. The data is generally classified as follows. Refer to the reference table for details.

| Code | Functions                              | Unit    | MODBUS original functions (ref.)   |
|------|----------------------------------------|---------|------------------------------------|
| 01   | Read digital (ON/OFF) parameter        | 1 bit   | Read coil status                   |
| 02   | Read digital input data                | 1 bit   | Read input relay status            |
| 03   | Read analog parameter                  | 16 bits | Read hold register contents        |
| 04   | Read analog input data                 | 16 bits | Read input register contents       |
| 05   | Write digital parameter                | 1 bit   | Change single coil status          |
| 06   | Write analog parameter                 | 16 bits | Write into single hold register    |
| 08   | Transmit received data (for diagnosis) |         | Loop-back test                     |
| 15   | Write two or more digital parameters   |         | Change multiple coils status       |
| 16   | Write two or more analog parameters    |         | Write into multiple hold registers |

(Function code table)

#### 4.3.3 Data section

Data configurations depend on the function codes. A request from a master unit is configured with the code number of the data to be read or written (Relative No. to be calculated from the Reference No. described below), the number of data pieces and others. A response from a slave unit configured with the data in responding to the request and others.

MODBUS basic data is a 16-bit integer and with/without codes depend on individual data. It is thus specified as integers with their decimal places assigned to separate addresses, or normalized with the high/low limits on a scale with fixed decimal places. The setting communications unit employs the system of assigning the decimal places to separate addresses.

### 4.3.4 Reference Nos.

Data in the setting communications unit have a "Reference No." assigned to each of them that is used as an identification of the data in reading and writing. The data in the setting communications unit are classified into "Digital parameter", "Digital input data", "Analog input data", and "Analog parameter" depending on their type. "Relative Nos." corresponding to the Reference Nos. specify data in a message.

|                    |                | - /                   |
|--------------------|----------------|-----------------------|
| Data type          | Reference No.  | Relative No.          |
| Digital parameter  | 1 to 10000     | Reference No. – 1     |
| Digital input data | 10001 to 20000 | Reference No. – 10001 |
| Analog input data  | 30001 to 40000 | Reference No. – 30001 |
| Analog parameter   | 40001 to 50000 | Reference No. – 40001 |
|                    |                |                       |

(Table 3. Reference Nos. and Relative Nos.)

For details of reference numbers, see Page 22.

### 4.3.5 Error check

Error check for transmission frames is different between the transmission modes. RTU mode: CRC-16 ASCII mode: LRC

#### 4.3.5.1 Calculation of CRC-16

In the CRC system, the information to be transmitted is divided by a generating polynomial and the resulting remainder is added to the end of the data. The generation polynomial is as follows.

$$1 + X^2 + X^{15} + X^{16}$$

The calculation is executed from a slave address to the end of data with the following procedure.

- 1) Initialization of the CRC-16 data (assumed as X) (= FFFFH)
- 2) Exclusive logical sum (EX OR) of data 1 and X  $~\rightarrow~$  X
- 3) 1 bit shifting of X to the right  $\longrightarrow$  X
- 4) When a carry is generated, take A001H and EX-OR. If not, go to 5).  $\rightarrow \,$  X
- 5) Repeat 3) and 4) until shifting 8 times.
- 6) EX-OR of the next data and X  $\rightarrow$  X
- 7) Same as 3) to 5)
- 8) Repeating up to the last data
- 9) Creation of a message in the sequence from low to high orders of the calculated 16-bit data (X).

Reference: CRC-16 Calculation Program

| 10  | D(1) = &H2 : D(2) = &H7 : N = 2 | 200 |
|-----|---------------------------------|-----|
| 20  | GOSUB *CRCMAKE                  |     |
| 30  | END                             | 210 |
| 40  |                                 | 220 |
| 100 | *CRCMAKE                        | 230 |
| 110 | CRC = &HFFFF                    |     |
| 120 | FOR I = 1 TO N                  | 240 |
| 130 | CRC = CRC XOR D(I)              | 250 |
| 140 | FOR J = 1 TO 8                  | 260 |
| 150 | CY = CRC AND &H1                | 270 |
| 160 | IF CRC < 0 THEN P = &H4000 ELSE | 280 |
|     | P = 0 : GOTO 180                | 290 |
| 170 | CRC = CRC AND &H7FFF            |     |
| 180 | $CRC = CRC \setminus 2$         |     |

```
200 IF CY = 1 THEN CRC = CRC XOR
&HA001
210 NEXT J
220 NEXT I
230 IF CRC < 0 THEN P = &H80 ELSE
P = 0 : GOTO 250
240 CRC = CRC AND &H7FFF
250 C1 = CRC AND &H7FFF
260 C2 = (CRC AND &H7F00) \ 256
270 C2 = C2 OR P
280 D (N+1) = C1 : D(N+2) = C2
```

```
290 RETURN
```

#### 4.3.5.2 Calculation of LRC

190

The calculation is executed from a slave address to the end of data with the following procedure.

1) Creation of a message in RTU mode.

CRC = CRC OR P

- 2) Addition of the start (slave address) to end of the data.  $\rightarrow\,$  X
- 3) Complement (bit reverse) of X  $\, \rightarrow \,$  X
- 4) Addition of 1 (X = X + 1)
- 5) Addition of X as LRC to the end of the message.

6) Conversion of the whole data to ASCII characters.

| Example) | When the data is | 02H     | 07H ,   | LRC  | is F7 | 7H that | t is 🗌 | 02H  | 07H | I F | 7H  | as a binary |
|----------|------------------|---------|---------|------|-------|---------|--------|------|-----|-----|-----|-------------|
|          | message and the  | ASCII I | nessage | e is | 30H   | 32H     | 30⊢    | I 37 | H 4 | 6H  | 37⊦ | 1.          |

### 4.3.6 Precautions on data processing

- (1) The decimal place of each data is shown in the reference table. The decimal place is fixed or is specified in each measuring range, or is followed by linear decimal place setting. When data is replayed, you are required to check it carefully.
- (2) Read or write the data with Reference Nos. specified. If data is written on any non-specified Reference No., the proper operation of the unit may be affected.
- (3) While it is possible to write data on two or more discreet Reference Nos., a start number with Reference No. not specified will result in an error (error No. 02H).
- (4) When reading multiple Reference Nos., the data with non-specified Reference No. is shown by "0".
- (5) When an error is detected during writing on multiple Reference Nos., all the programming becomes invalid.

## 4.4 Creating a Message

A message consists of (1) Slave address, (2) Function code, (3) Data section and (4) Error check code.

| Function code  | Number of data pieces |     |  |  |  |
|----------------|-----------------------|-----|--|--|--|
| T unction code | ASCII                 | RTU |  |  |  |
| 01             | 64                    | 64  |  |  |  |
| 02             | 64                    | 64  |  |  |  |
| 03             | 32                    | 32  |  |  |  |
| 04             | 32                    | 32  |  |  |  |
| 15             | 64                    | 64  |  |  |  |
| 16             | 32                    | 32  |  |  |  |

Messages being able to read or write at one time are within the following range.

How to create a message will be described by an example given below.

Example) Readout of voltage value and decimal point position of voltage value from the setting communications unit with [slave address 02]

)

### 4.4.1 RTU mode message

- (1) Slave address : 02 ( 02H
- (2) Function code : 04 ( 04H )

For reading out the voltage value and decimal point position of voltage value, the function code is 04H as shown in the reference table. Its function is [analog input data readout]. (Refer to para.4.7) For details of respective function codes, refer to 4.5 Function codes.

#### (3) Data section:

Starting Relative No. 1100 ( 04H 4CH ) and Number of data pieces 2 ( 00H 02H ) Reference Nos. "30001 to 40000" are assigned to measured data (analog input data). The reference table shows that "30101" is assigned to the voltage value and "30102" is assigned to the decimal point position of the voltage value. (See Section 4.7)

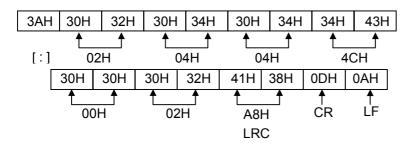
The relative No. of the starting "Reference No. 30101" is 30101 - 30001 = 100 that can be expressed by 2 bytes " 04H 4CH ".(See Section 4.3.4)

| The number of data pieces to be read is "2" | of the | voltag | ge value and the decimal point position of |
|---------------------------------------------|--------|--------|--------------------------------------------|
| voltage value which can be expressed by "   | 00H    | 02H    | " in 2 bytes                               |

(4) Error check: 1FB1H calculated with CRC-16 (B1H 1FH)

Error check in RTU mode is calculated with CRC-16. (See Section 4.3.5.1)

The data in the message core part is:


02H 04H 04H 4CH 00H 02H according to (1) to (3) and CRC-16 is 1FB1H.

Error check data is therefore B1H 1FH .

(5) Message: 02H 04H 04H 4CH 00H 02H B1H 1FH A message is created by the message configuration. (See Section 4.3)

#### 4.4.2 Message in ASCII mode

The error check LRC is calculated with the message core part. (See Section 4.3.5.2). LRC is A8H. Each data in the core part is converted to ASCII code. LRC is also converted to ASCII code to be added to the core part. The character " : " is added to the start of the message, and "CR" and "LF" are added to the end of the message.



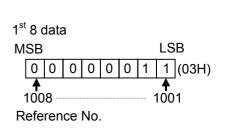
## 4.5 Function Code

Responses by function codes are shown below. (See Function code table in Section 4.3.2) Note) See Section 4.6 for responses in abnormal status.

## 4.5.1 Read digital parameter (read coil status)

[Function code: 01 (01H)]

"Digital (ON/OFF) parameters with sequential numbers" starting from the specified Reference No. to the number of data pieces are read out. The response message data is configured by each eight ON/OFF data sequentially placed in one data (1 byte). The LSB of each data is the digital data with the smallest number. If the number of data pieces is not in multiplies of 8, an unnecessary bit is 0.


| (Ruh/Stop) of the slave unit 2 |                |                |  |  |  |
|--------------------------------|----------------|----------------|--|--|--|
| Reference No                   | 1001           | 1002           |  |  |  |
| Data                           | ON             | ON             |  |  |  |
| Dala                           | MANU selection | Stop selection |  |  |  |

Example) Readout of digital setting values with Reference No. 1001 (AUTO/MANU) and 1002 (Run/Stop) of the slave unit 2

(RTU mode)

| Master→Units              |     |
|---------------------------|-----|
| Slave address             | 02H |
| Function code             | 01H |
| Start No. (H)             | 03H |
| Start No. (L)             | E8H |
| Number of data pieces (H) | 00H |
| Number of data pieces (L) | 02H |
| CRC (L)                   | 3DH |
| CRC (H)                   | 88H |

| Units→Master (normal)  |     |  |  |  |  |
|------------------------|-----|--|--|--|--|
| Slave address          | 02H |  |  |  |  |
| Function code          | 01H |  |  |  |  |
| Number of data         | 01H |  |  |  |  |
| 1 <sup>st</sup> 8 data | 03H |  |  |  |  |
| CRC (L)                | 11H |  |  |  |  |
| CRC (H)                | CDH |  |  |  |  |
|                        |     |  |  |  |  |



(Error check in ASCII mode)

The error check: CRC (L) and CRC (H) are as follows.

|     | · · · |     |     |
|-----|-------|-----|-----|
| LRC | 10H   | LRC | F9H |
|     |       |     |     |

Note) Start No. (Relative No.) is given by "Reference No. - 1".

(Decimal number 1000 (=1001 - 1)  $\rightarrow$  Hexadecimal 3E8H)

Note) Number of data is the number of data byte.

(This number is different from the number of requested data pieces. In the example given above, the number of requested data pieces is 2 and the number of data is 1).

### 4.5.2 Read digital input data (read input relay status)

[Function code. 02 (02H)]

"Digital (ON/OFF) input data with sequential numbers" starting from the specified Reference No. to the number of data pieces are read out. The response message data is configured by each eight ON/OFF data sequentially placed in one data (1 byte). The LSB of each data is the digital data with the smallest number. If the number of data pieces is not in multiplies of 8, an unnecessary bit is 0. The response example is the same as in "Function code 01", though its start number (Relative No.) is "Reference No. - 10001".

### 4.5.3 Read analog set value (read hold register contents)

[Function code. 03 (03H)]

"Analog parameters (2 bytes: 16 bits) with sequential numbers" starting from the specified Reference No. to the number of data pieces are read out. The response message data is configured by data split into high-order 8 bits and low-order 8 bits and arranged sequentially.

Example) Readout of slope setting and elevation of the slave unit 2

(Reading of analog parameters with Reference No. 41002 and 41003 of the slave unit 2)

| Reference No. | 41002   | 41003   |                                                     |
|---------------|---------|---------|-----------------------------------------------------|
| Data          | 50      | 10      | <ul> <li>Example of slope setting 50% and</li></ul> |
|               | (0032H) | (000AH) | elevation 10%                                       |

(RTU mode)

| Master→Units                |     | _ | Units→Master (norr | nal) |
|-----------------------------|-----|---|--------------------|------|
| Slave address               | 02H |   | Slave address      | 02H  |
| Function code               | 03H |   | Function code      | 03H  |
| Start No. (H)               | 03H |   | Number of data     | 04H  |
| Start No. (L)               | E9H |   | Slope data (H)     | 00H  |
| Number of data pieces (H)   | 00H |   | Slope data (L)     | 32H  |
| Number of data pieces (L)   | 02H |   | Elevation data (H) | 00H  |
| CRC (L)                     | 15H |   | Elevation data (L) | 0AH  |
| CRC (H)                     | 88H |   | CRC (L)            | E8H  |
|                             |     | - | CRC (H)            | FBH  |
| (Error check in ASCII mode) |     | _ |                    |      |
| LRC                         | 04H |   | LRC                | 22H  |

Note) Start No. (Relative No.) is given by "Reference No. - 40001".

(Decimal number 1001 (=41002-40001)  $\rightarrow$  Hexadecimal 3E9H)

Note) Number of data is the number of data pieces bytes.

Note) The number of data pieces of a message receivable at one time (that can be transmitted from this unit) is limited. (See Section 4.4.).

#### 4.5.4 Read analog input data (read input register contents)

[Function code. 04 (04H)]

"Analog parameters (2 bytes: 16 bits) with sequential numbers" starting from the specified Reference No. to the number of data pieces are read out. The response message data is configured by data split into high-order 8 bits and low-order 8 bits and arranged sequentially. The response example is the same as in "Function code 03", though its start number (Relative No.) is "Reference No. - 30001".

#### 4.5.5 Write digital parameter (Change single coil status)

[Function code: 05 (05H)]

A digital parameter with a specified number is brought into a specified status (ON or OFF).

Example) Setting of the slave unit 2 to MANU (for using the manual setting value of the setting communications unit)

(Turning ON the digital setting value with Reference No. 1001 of the slave unit 2)

| (RTU | mode) |
|------|-------|
|      |       |

| Master→Units           |     |  |
|------------------------|-----|--|
| Slave address          | 02H |  |
| Function code          | 05H |  |
| Parameter No. (H)      | 03H |  |
| Parameter No. (L)      | E8H |  |
| Programming status (H) | FFH |  |
| Programming status (L) | 00H |  |
| CRC (L)                | 0CH |  |
| CRC (H)                | 79H |  |

| Units→ Master (norm    | nal) |
|------------------------|------|
| Slave address          | 02H  |
| Function code          | 05H  |
| Parameter No. (H)      | 03H  |
| Parameter No. (L)      | E8H  |
| Programming status (H) | FFH  |
| Programming status (L) | 00H  |
| CRC (L)                | 0CH  |
| CRC (H)                | 79H  |

(Error check in ASCII mode)

|  | LRC | 0FH | LRC | 0FH |
|--|-----|-----|-----|-----|
|--|-----|-----|-----|-----|

Note) The response message is the same as the command message in normal response.

Note) Parameter No. (Relative No.) is given by "Reference No. - 1".

(Decimal number 1000 (=1001-1)  $\rightarrow$  Hexadecimal 3E8H)

Note) For its execution, program "FF00H". For setting to AUTO (for using input from the thyristor unit), program "0000H".

Note) When the slave address is programmed to "0", all slave units execute this command but no response is transmitted from any of them.

#### 4.5.6 Write analog parameter (Write into a single hold register)

[Function code: 06 (06H)]

An analog parameter with a specified number is brought into a specified value.

Example) Setting of the manual output value of the slave unit 2 to 90.0% (Setting of the analog parameter with Reference No. 41001 of the slave unit2 to "900")

| (RTU mode)                  |     |   |                      |     |
|-----------------------------|-----|---|----------------------|-----|
| Master→Units                |     | _ | Units→Master (norma  | al) |
| Slave address               | 02H |   | Slave address        | 02H |
| Function code               | 06H |   | Function code        | 06H |
| Parameter No. (H)           | 03H |   | Parameter No. (H)    | 03H |
| Parameter No. (L)           | E8H |   | Parameter No. (L)    | E8H |
| Programming data (H)        | 03H |   | Programming data (H) | 03H |
| Programming data (L)        | 84H |   | Programming data (L) | 84H |
| CRC (L)                     | 09H |   | CRC (L)              | 09H |
| CRC (H)                     | 1AH |   | CRC (H)              | 1AH |
| (Error check in ASCII mode) |     |   |                      |     |
| LRC                         | 86H |   | LRC                  | 86H |

Note) The response message is the same as the command message in normal response.

Note) Parameter No. (Relative No.) is given by "Reference No. - 40001".

(Decimal number 1000 (=41211 - 40001)  $\rightarrow$  Hexadecimal 3E8H)

Note) When the slave address is programmed to "0", all slave units execute this command but no response is transmitted from any of them.

#### 4.5.7 Loop back test

[Function code: 08 (08H)]

Transmission between master and slave units is checked. Response is made according to a specified diagnosis code. This unit performs the checking by returning the received data without any modification and the diagnosis code is fixed at "0000H",

Example) Execution of "Loop back test" on the slave unit 2

(RTU mode)

| Master→Units Units |       | Units→Master | (normal) |                    |          |     |
|--------------------|-------|--------------|----------|--------------------|----------|-----|
| Slave address      |       | 02H          |          | Slave address      | ;        | 02H |
| Function code      |       | 08H          |          | Function code      | <b>;</b> | 08H |
| Diagnosis code (H) | Fixed | 00H          |          | Diagnosis code (H) | Fixed    | 00H |
| Diagnosis code (L) | FIXEU | 00H          |          | Diagnosis code (L) | Fixeu    | 00H |
| Arbitrary data     |       | *            |          | Received data      | 1        | *   |
| Arbitrary data     |       | *            |          | Received data      | 1        | *   |
| CRC (L)            |       | *            |          | CRC (L)            |          | *   |
| CRC (H) *          |       | *            |          | CRC (H)            |          | *   |

#### 4.5.8 Write multiple digital parameters (Change multiple coils status)

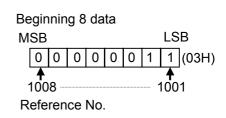
[Function code: 15 (0FH)]

Digital parameters starting from the specified Reference No. to the number of data pieces are brought into a specified status (ON or OFF). ON or OFF is specified by 1 data in each 8 sequential pieces. The LSB of each data is the digital data with the smallest number. If the number of data pieces is not in multiplies of 8, an unnecessary bit is ignored.

## Example) Setting of the slave unit 2 to MANU (for using the manual setting value of the setting communications unit) and selecting of stop condition

(Setting of the digital setting values with Reference No. 1001 and 1002 in the slave unit 2 to the following conditions)

| Reference No. | 1001           | 1002           |
|---------------|----------------|----------------|
| Data          | ON             | ON             |
|               | MANU selection | Stop selection |


(RTU mode)

| Master→Units           |      |
|------------------------|------|
| Slave address          | 02H  |
| Function code          | 0FH  |
| Start No. (H)          | 03H  |
| Start No. (L)          | E8H  |
| Number of              | 00H  |
| data pieces (H)        | 000  |
| Number of              | 02H  |
| data pieces (L)        | 0211 |
| Number of data         | 01H  |
| 1 <sup>st</sup> 8 data | 03H  |
| CRC (L)                | BEH  |
| CRC (H)                | A7H  |
|                        |      |

(Error check in ASCII mode)

LRC

| Units→Master (nor | mal) |
|-------------------|------|
| Slave address     | 02H  |
| Function code     | 0FH  |
| Start No. (H)     | 03H  |
| Start No. (L)     | E8H  |
| Number of         | 00H  |
| data pieces (H)   | 000  |
| Number of         | 02H  |
| data pieces (L)   | 0211 |
| CRC (L)           | 54H  |
| CRC (H)           | 49H  |



|     | LRC                   | 02H  |
|-----|-----------------------|------|
| e 1 | iven hy "Reference No | _ 1" |

Note) Start No. (Relative value) is given by "Reference No. - 1". (Decimal number 1000 (=1001 - 1) → Hexadecimal 3E8H)

FEH

- Note) When the slave address is programmed to "0", all slave units execute this command but no response is transmitted from any of them.
- Note) The number of data pieces of a message transmittable at one time (that can be received by this unit) is limited. (See Section 4.4.).

### 4.5.9 Write multiple analog parameters (Write into multiple hold registers)

[Function code: 16 (10H)]

Analog parameters starting from the specified Reference No. to the number of data pieces are brought into specified values. The data is transmitted by splitting into high-order 8 bits and low-order 8 bits and by arranging sequentially.

Example) Setting of the slave unit 2 to slope setting 50% and elevation 10%

(Setting of the analog parameters with Reference No. 41002 and 41003 of the slave unit 2)

| Reference No. | 41002   | 41003   |
|---------------|---------|---------|
| Data          | 50      | 10      |
|               | (0032H) | (000AH) |

(RTU mode)

| Master→Instruments        |     |
|---------------------------|-----|
| Slave address             | 02H |
| Function code             | 10H |
| Start No. (H)             | 03H |
| Start No. (L)             | E9H |
| Number of data pieces (H) | 00H |
| Number of data pieces (L) | 02H |
| Number of data            | 04H |
| 1 <sup>st</sup> data (H)  | 00H |
| 1 <sup>st</sup> data (L)  | 32H |
| 2 <sup>nd</sup> data (H)  | 00H |
| 2 <sup>nd</sup> data (L)  | 0AH |
| CRC (L)                   | 07H |
| CRC (H)                   | F1H |

| Instruments→Master (normal) | truments→Master (normal) |
|-----------------------------|--------------------------|
|-----------------------------|--------------------------|

|                           | ,   |
|---------------------------|-----|
| Slave address             | 02H |
| Function code             | 10H |
| Start No. (H)             | 03H |
| Start No. (L)             | E9H |
| Number of data pieces (H) | 00H |
| Number of data pieces (L) | 02H |
| CRC (L)                   | 90H |
| CRC (H)                   | 4BH |

| (Error check in ASCII mode) |  |
|-----------------------------|--|
| LRC                         |  |

| LRC | 00H |
|-----|-----|

Note) Start No. (Relative value) is given by "Reference No. - 40001". (Decimal number 1001 (=41002 - 40001)  $\rightarrow$  Hexadecimal 3E9H)

COH

- Note) When the slave address is programmed to "0", all slave units execute this command but no response is transmitted from any of them.
- Note) The number of data pieces of a message transmittable at one time (that can be received by this unit) is limited. (See Section 4.4.).

## **4.6 Processing in Abnormal Status**

The following response is given when any problem is found in the content of a message from a master unit.

#### 4.6.1 No response

The message is ignored with no response given when

- (1) A transmission error (overrun, framing, parity, CRC or LRC) is detected in the message;
- (2) The slave address in the message is not the receiver's own address;
- (3) Data interval in the messages is too long;
  - 28 bits or longer in RTU mode
  - 1 second or longer in ASCII mode
- (4) Transmission parameters are not consistent with those of the receiver;
- (5) The bytes of the received message exceed 96.
- Note) When the slave address is "0" in the write function, the message is executed unless any error is detected in it, but with no response transmitted to it. Since no response is given also when the above error is detected in the message, whether it is normal or abnormal cannot be judged by the response from this unit when the slave address is "0".

#### 4.6.2 Response error message

If the following failure is detected in a message from a master unit without any errors specified in Section 4.6.1, the code indicating the error is responded as an "error message".

The error message format is as follows.

| Slave address       | Function code | e Function code + 80H |
|---------------------|---------------|-----------------------|
| Function code + 80H | 01            | 81H                   |
| Error code          | 02            | 82H                   |
| CRC(L)              | 03            | 83H                   |
| CRC(H)              | 04            | 84H                   |
|                     | 05            | 85H                   |
|                     | 06            | 86H                   |
|                     | 08            | 88H                   |
|                     | 15            | 8FH                   |
|                     | 16            | 90H                   |

#### Error codes are as follows.

| Error code | Description                                                                                                                                                                                   |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01H        | Function code failure<br>When receiving an unspecified function code                                                                                                                          |
| 02H        | Relative No. (Reference No.) failure<br>When the start No. or parameter No. received is not the specified number.                                                                             |
| 03H        | Data pieces failure<br>The number of data pieces to be transmitted in response to the message received<br>exceeds a specified number.<br>(See Section 4.4)                                    |
| 09H        | <ul> <li>Communications error between setting unit and JU thyristor unit</li> <li>If this error occurs when data are written continuously, data must be rewritten after resetting.</li> </ul> |
| 11H        | <ul> <li>Not in the programming range</li> <li>When a number not in the range of the reference table is set.</li> </ul>                                                                       |
| 12H        | <ul> <li>Programming disabled</li> <li>Function keys are not locked.</li> <li>An attempt was made to set an item where no option is selected.</li> </ul>                                      |

## 4.7 Setting unit reference table

Digital setting values

| Reference | Function       | Write/                 | Data names                                                       | Setting ranges                                            | Initial | Remarks                                                                                                                                                         |
|-----------|----------------|------------------------|------------------------------------------------------------------|-----------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.       | codes          | Read                   |                                                                  |                                                           | values  |                                                                                                                                                                 |
| 1001      | 01<br>05<br>15 | Read<br>Write<br>Write | AUTO /<br>MANU                                                   | 0 / 1<br>0000h/ff00h in<br>case of<br>function code<br>05 | 0       | <ul> <li>0:AUTO (for using input value from the thyristor unit)</li> <li>1:MANU (for using manual setting values of the setting communications unit)</li> </ul> |
| 1002      | 01<br>05<br>15 | Read<br>Write<br>Write | Run/Stop                                                         | 0 / 1<br>0000h/ff00h in<br>case of<br>function code<br>05 | 0       | 0:Run (Contact input at the<br>thyristor unit is effective.)<br>1:Stop                                                                                          |
| 1003      | 01<br>05<br>15 | Read<br>Write<br>Write | Parameters<br>Not used /<br>Used                                 | 0 / 1<br>0000h/ff00h in<br>case of<br>function code<br>05 | 0       | Parameters (slope setting,<br>high-limit/low-limit setting,<br>soft start time) of the<br>setting communications<br>unit side<br>0: Not used / 1: Used          |
| 1010      | 01<br>05<br>15 | Read<br>Write<br>Write | Disconnection<br>alarm function<br>Not used /<br>Used            | 0 / 1<br>0000h/ff00h in<br>case of<br>function code<br>05 | 0       | Effective only when<br>optional disconnection<br>alarm function is selected<br>0: Not used / 1: Used                                                            |
| 1011      | 01<br>05<br>15 | Read<br>Write<br>Write | Disconnection<br>alarm<br>Initial<br>resistance<br>value setting | 0 / 1<br>0000h/ff00h in<br>case of<br>function code<br>05 | 0       | Effectiveonlywhenoptionaldisconnectionalarm function is selected1: Set0 when setting end                                                                        |
| 1012      | 01<br>05<br>15 | Read<br>Write<br>Write | Current limit<br>function<br>Not used /<br>Used                  | 0 / 1<br>0000h/ff00h in<br>case of<br>function code<br>05 | 0       | Effective only when<br>optional current limit<br>function is selected<br>0: Not used / 1: Used                                                                  |
| 1013      | 01<br>05<br>15 | Read<br>Write<br>Write | Phase-angle<br>firing/<br>Zero-cross<br>firing                   | 0 / 1<br>0000h/ff00h in<br>case of<br>function code<br>05 | 0       | 0: Phase angle firing<br>1: Zero-cross firing                                                                                                                   |

Digital input data

| Reference<br>No. | Function codes | Write/<br>Read | Data names                           | Detailed description                                                                                                     |
|------------------|----------------|----------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 11001            | 02             | Read           | JU<br>communications<br>error 1      | 0: Normal<br>1: Error (no response from JU tyristor unit)                                                                |
| 11002            | 02             | Read           | JU<br>communications<br>error 2      | <ul><li>0: Normal</li><li>1:Communications error between JU tyristor unit<br/>and setting communications unit</li></ul>  |
| 11003            | 02             | Read           | JU<br>communications<br>error 3      | <ul><li>0: Normal</li><li>1: Error of parameter between JU thyrisotr unit<br/>and setting communications unit.</li></ul> |
| 11010            | 02             | Read           | JU thyristor unit<br>error           | 0: Normal<br>1: Error including JU thyristor unit memory error                                                           |
| 11011            | 02             | Read           | Heater<br>disconnection<br>detection | 0: Normal<br>1: Heater disconnection                                                                                     |
| 11012            | 02             | Read           | Thyristor element<br>error           | 0: Normal<br>1: Thyristor element abnormal                                                                               |
| 11013            | 02             | Read           | Over-current<br>detection            | 0: Normal<br>1: Over-current detected                                                                                    |
| 11014            | 02             | Read           | Rapid fuse<br>breakage               | 0: Normal<br>1: Rapid fuse melted                                                                                        |
| 11015            | 02             | Read           | Abnormal radiation fin temperature   | 0: Normal<br>1: Radiating fin temperature abnormal                                                                       |

#### Analog setting value

|                  |                |                        |                       | r                           | 1                 |                                                                                     |
|------------------|----------------|------------------------|-----------------------|-----------------------------|-------------------|-------------------------------------------------------------------------------------|
| Reference<br>No. | Function codes | Write/<br>Read         | Data names            | Setting ranges              | Initial<br>values | Remarks                                                                             |
| 41001            | 03<br>06<br>16 | Read<br>Write<br>Write | Manual output         | 0.0 to 100.0<br>(0 to 1000) | 0.0<br>(0)        | Digital parameter<br>Effective only when<br>AUTO/MANU is set to<br>MANU             |
| 41002            | 03<br>06<br>16 | Read<br>Write<br>Write | Slope                 | 0 to 100                    | 100               | Digital parameter<br>Effective only when "used"<br>is set in parameter<br>selection |
| 41003            | 03<br>06<br>16 | Read<br>Write<br>Write | Elevation             | 0 to 100                    | 0                 | Digital parameter<br>Effective only when "used"<br>is set in parameter<br>selection |
| 41004            | 03<br>06<br>16 | Read<br>Write<br>Write | High-limit<br>setting | 0 to 100                    | 100               | Digital parameter<br>Effective only when "used"<br>is set in parameter<br>selection |
| 41005            | 03<br>06<br>16 | Read<br>Write<br>Write | Low-limit<br>setting  | 0 to 100                    | 0                 | Digital parameter<br>Effective only when "used"<br>is set in parameter              |

| Reference<br>No. | Function codes | Write/<br>Read | Data names | Setting ranges | Initial<br>values | Remarks   |
|------------------|----------------|----------------|------------|----------------|-------------------|-----------|
|                  |                |                |            |                |                   | selection |

| Reference<br>No. | Function codes | Write/<br>Read         | Data names                               | Setting ranges             | Initial<br>values | Remarks                                                                                                                                                      |
|------------------|----------------|------------------------|------------------------------------------|----------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41006            | 03<br>06<br>16 | Read<br>Write<br>Write | Soft start time                          | 1.0 to 20.0<br>(10 to 200) | 1.0<br>(10)       | Digital parameter<br>Effective only when "used"<br>is set in parameter<br>selection                                                                          |
| 41010            | 03<br>06<br>16 | Read<br>Write<br>Write | Heater<br>disconnection<br>ratio setting | 10 to 100<br>(10 to 100)   | 100               | Effective only when<br>optional heater<br>disconnection is selected                                                                                          |
| 41011            | 03<br>06<br>16 | Read<br>Write<br>Write | Heater<br>disconnection<br>delay time    | 0 to 255                   | 0                 | Effectiveonlywhenoptionalheaterdisconnection is selected                                                                                                     |
| 41012            | 03<br>06<br>16 | Read<br>Write<br>Write | Current limit<br>value                   | 0 to 100                   | 100               | Effective only when<br>optional current limit is<br>selected                                                                                                 |
| 41013            | 03<br>06<br>16 | Read<br>Write<br>Write | Feedback<br>switching                    | 0 to 4                     | Every<br>model    | Effective for phase-angle<br>firing only<br>Setting is possible in<br>zero-cross firing.<br>0: None / 1: Voltage /<br>2: Current / 3: Power /<br>4: External |
| 49501            | 03<br>06<br>16 | Read<br>Write<br>Write | Function keys<br>unlock/lock             | 0 to 1                     | 0                 | 0: Unlock / 1: Lock                                                                                                                                          |

Analog input data

| Reference<br>No. | Function codes | Write/<br>Read | Data names                                 | Detailed description                                                                            |
|------------------|----------------|----------------|--------------------------------------------|-------------------------------------------------------------------------------------------------|
| 31101            | 04             | Read           | Voltage value                              | Effective value voltage<br>A decimal point is added by the following<br>decimal point position. |
| 31102            | 04             | Read           | Voltage value<br>decimal point<br>position | Decided by rated voltage                                                                        |
| 31103            | 04             | Read           | Voltage value<br>status                    | 0: Normal / 1: + over-range / 2: - over-range                                                   |
| 31104            | 04             | Read           | Current value                              | Effective value current<br>Decimal point is added by the following decimal<br>point position.   |
| 31105            | 04             | Read           | Current value<br>decimal point<br>position | Decided by rated current                                                                        |
| 31106            | 04             | Read           | Current value                              | 0: Normal / 1: + over-range / 2: - over-range                                                   |

| Reference<br>No. | Function codes | Write/<br>Read | Data names                                         | Detailed description                                                                          |
|------------------|----------------|----------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                  |                |                | status                                             |                                                                                               |
| 31107            | 04             | Read           | Power value                                        | Effective value voltage<br>Decimal point is added by the following decimal<br>point position. |
| 31108            | 04             | Read           | Power value<br>decimal point<br>position           | Decided by rated voltage and rated current                                                    |
| 31109            | 04             | Read           | Power value status                                 | 0: Normal / 1: + over-range / 2: - over-range                                                 |
| 31110            | 04             | Read           | Load resistance<br>value                           | Load resistance value<br>Decimal point is added by the following decimal<br>point position.   |
| 31111            | 04             | Read           | Load resistance<br>value decimal<br>point position | Decided by rated voltage and rated current                                                    |
| 31112            | 04             | Read           | Load resistance<br>value status                    | 0: Normal / 1: + over-range / 2: - over-range                                                 |

## CHINO

## CHINO CORPORATION

32-8, KUMANO-CHO, ITABASHI-KU, TOKYO 173-8632

Telephone: 81-3-3956-2171 Facsimile: 81-3-3956-0915

Printed in Japan (

)